Aime, S., Barge, A., Botta, M., Fasano, M., Ayala, J. D. \& Bombieri, G. (1996). Inorg. Chim. Acta, 246, 423-429.

Aime, S., Botta, M. \& Ermondi, D. (1992). Inorg. Chem. 31, 42914299.

Aime, S., Botta, M., Fasano, M., Marques, M. P. M., Geraldes, C. F. G. C., Pubanz, D. \& Merbach, A. E. (1997). Inorg. Chem. 36, 2059-2068.
Belletti, D. (1993). FEBO. A New Hardware and Software System for Controlling a Philips PW1100 Single Crystal Diffractometer. Internal Report 1/93. Centro di Studio per la Strutturistica Diffrattometrica del CNR, Parma, Italy.
Chang, C. A., Francesconi, L. C., Malley, M. F., Kumar, K., Gougoutas, J. Z., Tweedle, M. F., Lee, D. W. \& Wilson, L. J. (1993). Inorg. Chem. 32, 3501-3508.

Desreux, J. F. (1980). Inorg. Chem. 19. 1319-1324.
Dubost, J. P., Legar, J. M., Langlois, M. H., Meyer, D. \& Schaefer, M. (1991). C. R. Acad. Sci. Paris Ser. II, 312, 349-354.

Howard, J. A. K., Kenwright, A. M., Moloney, J. M., Parker, D., Port, M., Navet, M., Rousseau, O. \& Woods, M. (1998). Chem. Commun. pp. 1381-1382.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lauffer, R. B. (1987). Chem. Rev. 87, 901-927.
Lauffer, R. B. (1990). Magn. Res. Quart. 6, 65-84.
Lehmann, M. S. \& Larsen, F. K. (1974). Acta Crvst. A30, 580-584.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Parker, D., Pulukkody, K., Smith, F. C., Batsanov, A. \& Howard, J. A. K. (1994). J. Chem. Soc. Dalton Trans. pp. 689-693.

Sheldrick, G. M. (1990). Acta Crust. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spirlet, M. R., Rebizant, J., Desreux. J. F. \& Loncin, M. F. (1984). Inorg. Chem. 23, 359-363.
Tóth, E.. Brüker, E., Lázar, I. \& Tóth, I. (1994). Inorg. Chem. 33, 4070-4076.
Wang, X., Jin, T., Comblin, V., Lopez-Mut, A., Merciny, E. \& Desreux, J. F. (1992). Inorg. Chem. 31, 1095-1099.

Acta Cryst. (1999). C55, 356-358

Lead(II) oxydiacetate hydrate

Stefan Norberg, Göran Svensson and Jörgen Albertsson

Department of Inorganic Chemistry, Chalmers University of Technology, S-412 96 Göteborg, Sweden. E-mail: stn@inoc. chalmers.se
(Received 25 June 1998: accepted 28 October 1998)

Abstract

The coordination polyhedron around the Pb atom in the title compound, poly[aqualead(II)- μ_{5}-oxydiacetato], $\left[\mathrm{Pb}\left(\mu_{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, is a distorted square antiprism

formed by three O atoms from one oxydiacetate ligand, four O atoms from four other identical ligands and one water O atom, resulting in a three-dimensional network structure. The almost planar oxydiacetate ligand is disordered over two positions. The Pb lone-pair $6 s^{2}$ electrons show stereochemical activity in the coordination sphere.

Comment

The structure determination of the title compound is part of a study of interactions between p-block metals and small ligands of the type $\left[\mathrm{O}_{2} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{X}-\mathrm{CH}_{2}-\right.$ $\left.\mathrm{CO}_{2}\right]^{2-}$, where X can be NH, O or S . This type of ligand can be mono-, bi- or tridentate and may form bridges between the metal atoms. A variety of solid-state complexes with the oxydiacetate ion, $\mathrm{O}\left(\mathrm{CH}_{2} \mathrm{COO}^{-}\right)_{2}$, have been investigated, e.g. complexes with the trivalent lanthanoids (Albertsson, 1970; Albertsson \& Elding, 1976), Rb^{+}(Albertsson et al., 1973) and Sr^{2+} (Baggio et al., 1996). In complexes with Pb^{2+}, the $6 s^{2}$ lone pair is likely to affect the coordination geometry, resulting in irregular coordination polyhedra with a large range of $\mathrm{Pb}-\mathrm{O}$ distances. Several Pb^{2+} complexes with active lone pairs are known, e.g. $\left[\mathrm{Pb}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\right]$ (Bensch \& Günter, 1987) and $\left[\left\{\mathrm{HB}\left(3,5-\mathrm{Me}_{2} \mathrm{pz}\right)_{3}\right\} \mathrm{Pb}\left(3,5-\mathrm{Me}_{2} \mathrm{pzH}\right)_{3^{-}}\right.$ Cl (pz is pyrazolyl; Reger et al., 1994).

Another reason for the present study was to compare the resulting structure with that of the related oxydiacetate double salt $\left[\mathrm{Pb}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Svensson et al., 1998), which involves three independent Pb atoms with coordination numbers seven, eight and nine. At least, the surroundings of the seven- and eight-coordinated Pb atoms are influenced by stereochemically active lone pairs. In order to eliminate nitrate from the structure, lead acetate was used as a precursor instead of lead nitrate, resulting in the polymeric compound $\left[\left\{\mathrm{Pb}\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}\left(\mu_{5}-\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\right]_{n}$, (I).

In the asymmetric unit of the title compound, the Pb atom, the water O atoms and the ether O 1 atom of the oxydiacetate ligand are located on the $y=\frac{1}{4}$ mirror plane, with the acetate moieties distributed over two locations, a and b, with refined occupancies of 0.44 (3) and 0.56 (3), respectively (see Experimental). The differences between the a and b ligands are very small. They are almost planar, with r.m.s. deviations of 0.064 (for a) and $0.102 \AA$ (for b), and have the expected overall geometry when compared with the

Fig. 1. A view ($O R T E P$ III; Burnett \& Johnson, 1996) of the crystal packing of the poly[aqualead(II)- μ_{5}-oxydiacetato compound. Only b ligands are depicted, with the H atoms excluded. The bridging of the closest Pb atom ($\mathrm{Pb}^{\mathrm{vi}}$) is shown. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $1-x,-\frac{1}{2}+y, 1-z ;$ (iii) $\frac{1}{2}-x,-\frac{1}{2}+y, \frac{1}{2}+z$; (iv) $1-x, 1-y$, $1-z ;$ (v) $x, \frac{1}{2}-y, z ;(\mathrm{vi})-\frac{1}{2}+x, \frac{1}{2}-y, \frac{3}{2}-z .1^{1}$
pure acid (Herbertsson \& Boman, 1973) and with other coordination compounds. The b ligand is shown in Fig. 1. Eight O atoms form a distorted square antiprism around the Pb atom (Fig. 2). One of the squares is composed of the water O 4 atom and the $\mathrm{O} 1, \mathrm{O} 2$ and $\mathrm{O} 2^{\vee}$ atoms of one oxydiacetate ligand acting in a tridentate manner with respect to this Pb atom. The other square is formed by four O 3 atoms ($\mathrm{O} 3^{i}, \mathrm{O} 3{ }^{\mathrm{ii}}, \mathrm{O} 3^{\text {iii }}$ and $3^{\text {iv }}$) from four different oxydiacetate ligands (see Fig. 1 for symmetry codes). Thus, each ligand bridges five Pb^{2+} ions forming a three-dimensional network. The bonding distances between the Pb and the seven oxydiacetate O atoms are in the range 2.49 (3)- 2.909 (17) \AA for a and 2.554 (10) -2.787 (14) \AA for b. The distance to the water O 4 atom is slightly shorter, 2.451 (10) \AA. The shortest $\mathrm{Pb} \cdots \mathrm{Pb}$ distance is $\mathrm{Pb} 1 \cdots \mathrm{~Pb} 1^{v i}$ of 4.334 (1) \AA.
The distortion of the square antiprism may arise from a stereochemically active lone pair on Pb . The oxydiacetate ligand is bent upwards, as can be seen in Fig. 2, which indicates that the position of the lone pair is below the ligand in the direction of the triangle formed by atoms $\mathrm{O} 1, \mathrm{O}^{\mathrm{ii}}$ and O^{iv}. The Pbl atom is located 1.371 (5) \AA above the $\mathrm{O} 3 b$ square and $1.436(17) \AA$ below the $\mathrm{O} 2 b / \mathrm{O} 2 b^{\vee} / \mathrm{O} 4$ triangle, the corresponding values for the a ligand being 1.515 (9) and 1.18 (3) \AA, respectively. The angle between the O 3 square and the ligand is $26(1)$ (for a) or $30(1)^{\circ}$ (for b). The influence of the lone pair on the structure is small. It does not occupy a coordination site as in similar structures, e.g. lead(II) malonate, $\left[\mathrm{Pb}\left(\mathrm{C}_{3} \mathrm{H}_{2} \mathrm{O}_{4}\right)\right]$ (Bensch \& Günter, 1987), which also has an antiprismatic coordination, although one corner is occupied by the lone pair; the resulting $\mathrm{Pb}-\mathrm{O}$ distances are in the range 2.41 (1)2.99 (2) \AA. The lone-pair activity is also smaller in the title compound than in $\left[\mathrm{Pb}_{4}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)_{3}\left(\mathrm{NO}_{3}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (Svensson et al., 1998), especially if compared with
the seven- and eight-coordinated Pb^{2+} ions in the latter compound.

Fig. 2. Two views of the coordination polyhedron around Pb , showing the eight O atoms forming a distorted square antiprism (only atoms belonging to the b ligands are included, and symmetry codes and ellipsoid probability are as in Fig. 1).

Experimental

The title compound was prepared by dissolving stoichiometric amounts of oxydiacetic acid and lead acetate in water. A precipitate was formed when these solutions were mixed. Colourless crystals suitable for X-ray measurements were grown by slow recrystallization from a water solution at room temperature.

Crystal data

$\left[\mathrm{Pb}\left(\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{O}_{5}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$
$M_{r}=357.28$
Orthorhombic

Pnma

$a=6.9403$ (5) Å
$b=9.9480$ (7) \AA
$c=9.5931$ (7) \AA
$V=662.33(8) \AA^{3}$
$Z=4$
$D_{x}=3.583 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\omega-2 \theta$ scans
Absorption correction: Gaussian (Hall et al., 1995)
$T_{\text {min }}=0.089, T_{\text {max }}=0.194$
2166 measured reflections
1006 independent reflections
729 reflections with

$$
I>2 \sigma(I)
$$

Refinement

Refinement on F^{2}

$R(F)=0.044$
$w R\left(F^{2}\right)=0.112$
$S=1.197$
1006 reflections
53 parameters
H -atom parameters not refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0665 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=19-30^{\circ}$
$\mu=25.452 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism
$0.13 \times 0.11 \times 0.08 \mathrm{~mm}$
Clear, colourless

$$
\begin{aligned}
& R_{\text {int }}=0.0441 \\
& \theta_{\max }=30^{\circ} \\
& h=-9 \rightarrow 0 \\
& k=-13 \rightarrow 13 \\
& l=-13 \rightarrow 0
\end{aligned}
$$

3 standard reflections frequency: 60 min intensity decay: -2.0%

Table 2. Selected bond lengths (\AA)

$\mathrm{Pbl}-\mathrm{O} 1$	$2.554(10)$	$\mathrm{Pbl}-\mathrm{O} 3 a^{11}$	$2.91(2)$
$\mathrm{Pbl}-\mathrm{O} 4$	$2.451(10)$	$\mathrm{Pbl}-\mathrm{O} 2 b$	$2.69(2)$
$\mathrm{Pbl}-\mathrm{O} 2 a$	$2.49(3)$	$\mathrm{Pbl}-\mathrm{O} 3 b^{\prime}$	$2.689(13)$
$\mathrm{Pbl}-\mathrm{O} 3 a^{\prime}$	$2.76(2)$	$\mathrm{Pbl}-\mathrm{O} 3 b^{i}$	$2.787(14)$

Symmetry codes: (i) $\frac{1}{2}-x, 1-y, \frac{1}{2}+z$; (ii) $1-x, y-\frac{1}{2}, 1-z$.
After the first few cycles of least-squares refinement, the anisotropic displacement ellipsoids for $\mathrm{C} 1, \mathrm{C} 2, \mathrm{O} 2$ and O 3 were very elongated, indicating some kind of disorder of the ligand. Refinement of two positions for each of these atoms resulted in a lowering of the r.m.s. deviation from the mean of the $\Delta \rho$ maps from 0.57 to $0.50 \mathrm{e}^{\AA} \AA^{-3}$. The number of parameters decreased from 56 to 53 since the atoms were refined with isotropic displacement parameters because of the closeness of the a and b positions. Attempts to refine the structure in the non-centrosymmetric space group Pna 2_{1} were unsuccessful. The relatively high residual electron density is located near the Pb atom, the maximum $0.83 \AA$ and the minimum $0.71 \AA$ from the Pbl atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: Xtal3.4 (Hall et al., 1995). Data reduction: Xtal3.4. Program(s) used to solve structure: SIR92 (Altomare et al., 1994). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPIII (Burnett \& Johnson, 1996). Software used to prepare material for publication: TEXSAN for Windows (Molecular Structure Corporation, 1997).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FG1511). Services for accessing these data are described at the back of the journal.

References

Albertsson, J. (1970). Acta Chem. Scand. 24, 3527-3541.
Albertsson, J. \& Elding, I. (1976). Acta Cryst. B32, 3066-3077.
Albertsson, J., Grenthe, I. \& Herbertsson, H. (1973). Acta Cryst. B29, 2839-2844.
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.

Baggio, R., Perec, M. \& Garland, M. T. (1996). Acta Cryst. C52, 2996-2999.
Bensch. W. \& Günter, J. R. (1987). Z. Kristallogr. 178, 257-262.
Burnett, M. N. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL6895. Oak Ridge National Laboratory, Tennessec, USA.

Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). Editors. Xıal3.4 User's Manual. University of Western Australia, Australia.
Herbertsson, H. \& Boman, C. E. (1973). Acta Chem. Scand. 27, 2234 2236.

Molecular Structure Corporation (1997). TEXSAN for Windows. Single Crystal Structure Analysis Software. Version 1.01. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Reger, D. L., Ding. Y., Rheingold, A. L. \& Ostrander, R. L. (1994). Inorg. Chem. 33, 4226-4230.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Svensson, G., Olson, S. \& Albertsson, J. (1998). Acta Chem. Scand. 52, 868-872.

